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Derivation of odds ratio transformations OR1 and OR2

Letting p0 and p1 represent the frequency of the risk allele (or effect allele) within controls
and cases respectively we can write the OR as

OR =
p1

1− p1

1− p0

p0
. (1)

If we have individual-level data, then we can estimate p0 and p1 from the sample and
calculate the OR directly using (1), without making any further assumptions. However,
if only summary statistics are available we seek to derive an expression for OR that
potentially depends on summary statistics generated from a linear regression model.

We assume the following simple linear regression model

Yi = β0 + β1Xi + εi, (2)

where Yi is the response variable for individual i = 1, . . . , n of a population, which we
assume takes values 0 or 1 for unaffected (controls) and diseased (cases) individuals
respectively. We define K as the lifetime probability that an individual will be affected by
the disease in the population. By definition E(Yi) = P(Yi = 1) = K, where the E notation
denotes expectation. The independent predictor variable Xi is considered random and
models a SNP. The random variable Xi takes values 0, 1, or 2 with the corresponding allele
frequency of the risk allele, denoted p, and we assume that each SNP is independent. The
random variable Xi is thus Binomial(2, p) distributed for each SNP. In Equation (2), εi is a
random error term such that E(εi) = 0 and Var(εi|Xi) = σ2 and the unknown parameters
β0 and β1 are to be estimated.

Under the simple linear regression model (2), we seek to solve for expressions of p0 and
p1 and substitute these into (1) to complete our derivation of the transformation. We use
the expression for the ordinary least squares estimator of β1, and p = (1− k)p0 + kp1 (from
the law of total probability) to back solve for p0 and p1 using the following relationships:

β1 =
Cov(Y, X)

Var(X)
(3)

Cov(Y, X) = 2k(1− k)(p1 − p0) (4)

Var(X) = Var(X|Y = 0)(1− k) + Var(X|Y = 1)k + 4k(1− k)(p0 − p1)
2, (5)

with Var(X|Y = 0) and Var(X|Y = 1) equaling the variances of the coded genotypes in
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the controls and cases respectively. To derive the covariance we have

Cov(Y, X) = E(YX)−E(Y)E(X)

= E(YX)− 2kp.

As we assume that Y takes values 0 and 1 and X takes values 0, 1, and 2 the only product
outcomes that contribute to E(YX) are when Y = 1 and X = 1, and when Y = 1 and
X = 2. Therefore,

E(XY) =
2

∑
x=0

1

∑
y=0

xyP(X = x, Y = y)

= P(X = 1, Y = 1) + 2P(X = 2, Y = 1)

= P(X = 1|Y = 1)P(Y = 1) + 2P(X = 2|Y = 1)P(Y = 1)

= 2p1(1− p1)k + 2p2
1k

= 2p1k, therefore

Cov(Y, X) = 2p1k− 2kp. (6)

It is noted that the above derivation of the E(XY) and subsequent Cov(Y, X) required the
assumption that the within case genotype frequencies are in Hardy-Weinberg equilibrium
(HWE). Substituting p = (1− k)p0 + kp1 into (6) we have

Cov(Y, X) = 2p1k− 2k[(1− k)p0 + kp1]

= 2p1k− 2kp0 + 2k2p0 − 2k2p1

= 2k(1− k)(p1 − p0). (7)

To derive equation (5), we note that the events Y = 1 and Y = 0 partition the whole
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outcome space and thus we can use the law of total variance to obtain

Var(X) =
1

∑
y=0

Var(X|Y = y)P(Y = y) +
1

∑
y=0

E(X|Y = y)2[1−P(Y = y)]P(Y = y)−

2
1

∑
y=1

1−1

∑
j=0

E(X|Y = y)P(Y = y)E(X|Y = j)P(Y = j)

= Var(X|Y = 0)P(Y = 0) + Var(X|Y = 1)P(Y = 1)+

E(X|Y = 0)2[1−P(Y = 0)]P(Y = 0)+

E(X|Y = 1)2[1−P(Y = 1)]P(Y = 1)−
2E(X|Y = 1)P(Y = 1)E(X|Y = 0)P(Y = 0)

= Var(X|Y = 0)(1− k) + Var(X|Y = 1)k

+ 4p2
0k(1− k) + 4p2

1(1− k)k− 8p0p1(1− k)k

= Var(X|Y = 0)(1− k) + Var(X|Y = 1)k + 4k(1− k)(p0 − p1)
2. (8)

We cannot observe the Var(X) or Var(X|Y = 0) and Var(X|Y = 1) from summary statistics
and thus we must make some assumptions about the form of the variance for the SNP.
Initially, we can assume that the SNP genotype frequencies across cases and controls
are in HWE and let Var(X) = 2p(1− p). This assumes that 2p(1− p) does not deviate
substantially from (8). In the following section (Deviation between two variance assumptions)
we show when this assumption is reasonable. If we make this assumption, then we can
combine equations (3), (4) and Var(X) = 2p(1− p) to arrive at

β1 =
2k(1− k)(p1 − p0)

2p(1− p)
,

which implies

p1 = p0 +
β1p(1− p)

k(1− k)
. (9)

Substituting,

p0 =
p− kp1

(1− k)
(10)
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from p = (1− k)p0 + kp1 into (9) then

p1 =
p− kp1

1− k
+

β1p(1− p)
k(1− k)

p1 = p +
β1p(1− p)

k
. (11)

Combining equation (1), (10) and (11) we have the following expression for the transfor-
mation to OR

OR1 =

[
pk+β1 p(1−p)

k

] [
1− p−pk−β1 p(1−p)

1−k

]
[
1− pk+β1 p(1−p)

k

] [
p−pk−β1 p(1−p)

1−k

]
=

[k + β1(1− p)][1− k + β1p]
[k− β1p][1− k− β1(1− p)]

, (12)

which corresponds to (5) in the main text.
We can improve on the assumption of Var(X) = 2p(1 − p) by assuming the geno-

type frequencies within cases and controls are in HWE. Under this assumption, we let
Var(X|Y = 0) = 2p0(1− p0) and Var(X|Y = 1) = 2p1(1− p1) in (8) and substitute the
variance into (3) to obtain

β1 =
k(1− k)(p1 − p0)

[p0(1− p0)(1− k) + p1(1− p1)k + 2k(1− k)(p0 − p1)2]
. (13)

Letting A = k(1− k) and B = (1− k) in equation (13) we have

Ap1 − Ap0 =β1B[p0 − p2
0] + β1k[p1 − p2

1] + 2Aβ1[p2
0 − 2p0p1 + p2

1]

0 =p2
0[2Aβ1 − β1B] + p0[A + β1B]− 4Aβ1p0p1 + p2

1[2Aβ1 − β1k] + p1[−A + β1k].

We know p = (1− k)p0 + kp1 and thus substituting [p− Bp0]/k for p1

0 =p2
0

[
2Aβ1 − β1B +

4ABβ1

k
+

B2[2Aβ1 − β1k]
k2

]
+

p0

[
A + β1B− 4Aβ1p

k
− 2Bp[2Aβ1 − β1k]

k2 − B[−A + β1k]
k

]
+

p2[2Aβ1 − β1k]
k2 +

p[−A + β1k]
k

. (14)
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This can be simplified to a quadratic in p0 with the following coefficients

a =
β1(1− k)

k
, (15)

b =
(1− k)(k− 2β1p)

k
, (16)

c =
p2β1 − 2p2β1k + pk2 − pk + pkβ1

k
. (17)

Substituting these coefficients into −b±
√

b2−4ac
2a and simplifying we have the following

solutions for p0

p0 =
(1− k)(2β1p− k)±

√
(1− k)[k2(1− k) + 4pβ2

1k(p− 1)]

2β1(1− k)
. (18)

Substituting p1 = [p− (1− k)p0]/k into equation (1) and simplifying we have

OR = 1 +
p− p0

p0(k− p) + p2
0(1− k)

. (19)

Substituting (18) into equation (19) we have the following transformation (after some
algebra)

OR2 = 1+
2β1

{
2pβ1(1− k)− (1− k)(2β1 p− k)±

√
k(1− k)[k(1− k)− 4p(1− p)β2

1]
}

2β1(k− p)
{
(1− k)(2β1 p− k)±

√
k(1− k)[k(1− k)− 4p(1− p)β2

1]
}
+
{
(1− k)(2β1 p− k)±

√
k(1− k)[k(1− k)− 4p(1− p)β2

1]
}2 .

Deviation between two variance assumptions

We seek to characterise the deviation between the two variance assumptions, which is the
primary difference between the derivation of OR1 and OR2. We define

Var(X)1 = 2p(1− p) = 2[(1− k)p0 + kp1][1− (1− k)p0 − kp1]

= 2p0 − 2p2
0 + 2kp2

0 − 2kp0p1 − 2kp0 + 2kp2
0 − 2k2p2

0 + 2k2p0p1

+ 2kp1 − 2kp1p0 + 2k2p1p0 − 2k2p2
1,

Var(X)2 = 2p0(1− p0)(1− k) + 2p1(1− p1)k + 4p2
0k(1− k) + 4p2

1(1− k)k− 8p0p1(1− k)k

= 2p0 − 2p2
0 − 2kp0 + 2kp2

0 + 2kp1 − 2kp2
1 + 4p2

0k− 4p2
0k2 + 4kp2

1 − 4p2
1k2

− 8kp0p1 + 8p0p1k2.
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Looking at the difference and cancelling like terms

Var(X)1 −Var(X)2 = 2p2
0(k

2 − k) + 2p2
1(k

2 − k) + 4p0p1(k− k2).

Let d(p0, p1, k) = 2p2
0(k

2− k) + 2p2
1(k

2− k) + 4p0p1(k− k2) be the difference function. This
equation will always be negative, which can be shown by factorising this function such
that

d(p0, p1, k) = 2(k2 − k)(p0 − p1)
2.

Because 0 ≤ k ≤ 1 then k2 will always be less than k, which implies that we have a negative
term multiplied by a squared term, which is always negative. This implies that Var(X)2

is always greater than Var(X)1. We wish to characterise the maxima and minima of this
function subject to the constraints that 0 ≤ p0 ≤ 1, 0 ≤ p1 ≤ 1, 0 ≤ k ≤ 0.5. This will allow
us to characterise when these variance assumptions deviate substantially. Equating the
partial derivatives of d(p0, p1, k) to 0 we have

d′p0
(p0, p1, k) = 4p0(k2 − k)− 4p1(k2 − k) = 0,

d′p1
(p0, p1, k) = 4p1(k2 − k)− 4p0(k2 − k) = 0,

d′k(p0, p1, k) = 4p2
0k− 2p2

0 + 4p2
1k− 2p2

1 + 4p0p1 − 8p0p1k = 4k(p0 − p1)
2 − 2(p0 − p1)

2 = 0,

which leads to

4p0(k2 − k)− 4p1(k2 − k) = 0⇒ p0 = p1,

4p1(k2 − k)− 4p0(k2 − k) = 0⇒ p1 = p0,

4k(p0 − p1)
2 − 2(p0 − p1)

2 = 0⇒ k = 1/2.

When p0 = p1 there is no effect and the variance difference is maximised at 0. For k = 1/2
we check the boundary to locate the minimum. Substituting k = 0.5 into d(p0, p1, k) to
obtain

d(p0, p1, 1/2) = −1
2
(p0 − p1)

2,

which is minimised when the difference between p0 and p1 is greatest or when (p0, p1) =

(0, 1) and (p0, p1) = (1, 0). These points are both global minima and imply that the
greatest difference between OR1 and OR2 is achieved when k = 0.5 and the difference in
case-control allele frequency (assuming genotypes are in HWE) for the risk allele is at its
greatest. This implies that under the assumed model that the transformation is derived
under, we expect OR1 and OR2 to be most different when k approaches 0.5 and when the
effect is large. Transformation OR2 should perform equally well or better than OR1 if the
data are generated under the assumed model.
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Existence of root of p0 quadratic in (0, 1). As stated in the main text, the solution to the
quadratic in p0 in (18) can have two, one, or no solution. By the intermediate value theorem
(IVT) the quadratic polynomial

f (p0) = p2
0

β1(1− k)
k

+ p0
(1− k)(k− 2β1p)

k
+

p2β1 − 2p2β1k + pk2 − pk + pkβ1

k
,

has a root in (0, 1) if f (0) < 0 < f (1). We note that because f (p0) is a quadratic then this
is a condition for a single root. Therefore, we have the following conditions

p2β1 − 2p2β1k + pk2 − pk + pkβ1

k
< 0

which implies that

β1 <
pk− pk2

p2 − 2p2k + pk
,

and
β1(1− k)

k
+

(1− k)(k− 2β1p)
k

+
p2β1 − 2p2β1k + pk2 − pk + pkβ1

k
> 0.

Simplifying this we have

β1(1− k) + (1− k)(k− 2β1p) > −p2β1 + 2p2β1k− pk2 + pk− pkβ1

β1 >
pk− pk2 − k(1− k)

(1− k)− 2(1− k)p + p2 − 2p2k + pk]
.

The combined conditions result in the following bounds on β1

pk− pk2 − k(1− k)
[(1− k)− 2(1− k)p + p2 − 2p2k + pk]

< β1 <
pk− pk2

p2 − 2p2k + pk
.

It is possible that there exists two roots to the system for which the above bounds do not
hold. We will seek to find when there is no solution to the quadratic and then two solutions
will be the complement of the above bounds and the no solution constraints. There will
exist no solution if b2 − 4ac < 0. Substituting the coefficients (15), (16), and (17) we have

[
(1− k)(k− 2β1p)

k

]2

− 4
β1(1− k)

k
p2β1 − 2p2β1k + pk2 − pk + pkβ1

k
< 0,
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which simplifies to the constraints

−

√
−k2(1− k)
4p2k− 4pk

< β1 <

√
−k2(1− k)
4p2k− 4pk

. (20)

The numerator and denominator for (20) will always be negative (overall positive) because
k > 0 and 4p2k < 4pk because p ∈ (0, 1).

Eliminating p

It may be the case that the allele frequency for each SNP is not reported and an adequate
reference data set is not obtainable, for example, in an admixed population. If this is the
case, then we can use the information contained in the standard error of the regression
coefficient se(β̂1), which is often reported with summary statistics, to derive expressions
that are independent of p with equivalent assumptions to OR1 and OR2. We explore their
adequacy relative to the expressions that include p through simulation.

The standard error of the estimator β̂1 from ordinary least squares can be represented as

se(β̂1)
2 =

Var(Y) + β2
1Var(X)− 2β1Cov(X, Y)
(n− 2)Var(X)

=
Var(Y)− β2

1Var(X)

(n− 2)Var(X)
. (21)

From summary statistics, we usually have an estimate of the standard error of the genetic
effect for each SNP and thus we can couple the expression for the ordinary least squares
regression coefficient with the expression for the standard error to back solve for p0 and p1.
Therefore, we know from (3),

Var(X) =
2k(1− k)(p1 − p0)

β1
. (22)

Rearranging (21) for Var(X) and using Var(Y) = k(1− k)

Var(X) =
k(1− k)

se(β̂1)2(n− 2) + β2
1

. (23)

Equating (22) and (23) we solve for p1 − p0

p1 − p0 =
β1

2[se(β̂1)2(n− 2) + β2
1]

. (24)

The right hand side of (24) is a function of observable quantities but we require another
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relationship to separate p0 from p1. Let d = p1 − p0, then if we assume that the effect is
small then Var(X) = 2p(1− p) and we can use p = (1− k)p0 + kp1 to show that

2p(1− p) = 2(p0 + kd− p2
0 − 2kp0d− k2d2). (25)

Equating (25) to (22) we have the following polynomial in p0

− β1p2
0 + p0(β1 − 2β1kd) + β1kd(1− kd)− k(1− k)d = 0. (26)

Equation (26) can be solved with the quadratic formula and the following coefficients

a = −β1,

b = β1 − 2β1kd,

c = β1kd(1− kd)− k(1− k)d, (27)

and then p1 can be solved using equation (24) and the odds ratio estimated using (1).
In the same manner as above, we solve for p0 assuming equation (8) for the variance,

which does not assume HWE across cases and controls. Let,

β1 =
2k(1− k)d

2p0(1− p0)(1− k) + 2p1(1− p1)k + 4k(1− k)d2

β1[p0(1− p0)(1− k) + p1(1− p1)k + 2k(1− k)d2] = k(1− k)d

β1p0(1− p0)(1− k) + β1p1(1− p1)k + β12k(1− k)d2 − k(1− k)d = 0

− p2
0β1 + (β1 − 2dkβ1)p0 + β12k(1− k)d2 − k(1− k)d + kβ1(d− d2) = 0. (28)

Equation (28) can be solved for p0 using the quadratic formula and the following coeffi-
cients

a = −β1, (29)

b = β1 − 2β1kd, (30)

c = 2β1k(1− k)d2 − k(1− k)d + kβ1(d− d2), (31)

and then p1 can be solved using equation (24) and the odds ratio estimated using equation
(1). We note that the difference in the quadratics (26) and (28) only changed in c. If we take
the difference (31) − (27) then we arrive at −kβ1(d− d2).

There will be no solution to (28) when b2 − 4ac < 0. Using (29), (30) and (31) then
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b2 − 4ac < 0 implies that

β1 − 4β1k2d2 + 4β1d2k− 4kd + 4k2d < 0.

Substituting d and simplify to acquire a quadratic in the variance

[se(β̂1)
2(n− 2) + β2

1]
2 − β2

1k2 + β2
1k− 2k[se(β̂1)

2(n− 2) + β2
1] + 2k2[se(β̂1)

2(n− 2) + β2
1] < 0

se(β̂1)
4(n− 2)2 + se(β̂1)

2[2β2
1(n− 2)− 2k(n− 2) + 2k2(n− 2)] + β4

1 + β2
1k2 − β2

1k < 0.
(32)

For n > 2, (32) is concave down due to the positivity of the first coefficient. This implies
that (32) will only be negative if the quadratic evaluated at the critical value is < 0. To find
the critical value we calculate the first oder derivative of (32) to arrive at

se(β̂1)
2 =

k− k2 − β2
1

n− 2
. (33)

If (32) evaluated at (33) is less than zero and se(β̂1)
2 is within the bounds set by the

following solutions to the roots of (32)

−[β2
1 − k(1− k)]±

√
k2(1− k)2 − β2

1k(1− k)

(n− 2)
,

then the standard error transformation breaks down.

Sampling variance of transformed regression coefficient under OR1

For the approximate sampling variance of the estimate of β1 on the log odds ratio scale, de-
fined to be β1l, we can use a Taylor series (ignoring third moments and greater) expansion
around the true β1 (as stated in Lynch et al. (1998))

Var(β̂1l) ≈
(

∂β1l
∂β1

)2
∣∣∣∣∣
β̂1

Var(β̂1) (34)
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where we assume β1l = log(OR1). We take the first derivative of the natural logarithm of
equation (12)

∂ log(OR1)

∂β1
=

p(1− p)
pk + β1p(1− p)

+
p(1− p)

1− k− p + pk + β1p(1− p)
+ (35)

p(1− p)
k− pk− β1p

+
p(1− p)

p− pk− β1p(1− p)
(36)

=
(1− p)

k + β1(1− p)
+

p
1− k + β1p

+
p

k− β1p
+

(1− p)
1− k− β1(1− p)

(37)

Substituting this into equation (34) we can make approximate inference about the sampling
variance of the estimated genetic effect on the log odds ratio scale.
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Supplemental figures

Figure S1 Contour boundaries for the LMM effect size that corresponds to an odds
ratio equal to 50 for OR2. For a particular k and p the LMM effect size that corresponds
to an odds ratio equal to 50 will vary. For example, for a sample prevalence of 0.5 for
all values of p the LMM effect that corresponds to an odds ratio of 50 will lie between
0.4 and 0.5. For a given k and p all effect sizes displayed lie within the bounds for the
existence of one root to (18).
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Figure S2 Performance of odds ratio transformation for null phenotype simulation.
Comparison of OR2 with estimated odds ratios from logistic regression. Phenotypes
were simulated with only the effect of PC 1 and no genetics effects. Panels display com-
parisons of 10,000 randomly sampled loci from each of the replicates. Figure includes
the fitted regression line (blue) and y = x line (black) for reference with the key statistics
of this regression displayed at the top of each panel.
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Figure S3 Performance of logistic regression and odds ratio transformations from the linear
model across simulation scenarios evaluated using the squared difference from the true esti-
mate. Comparison of squared deviations of estimated odds from the true simulated odds ratios
from logistic regression (green), transformed odds ratios from the LMM using OR2 (red), and
the transformed odds ratios from the LMM using the equation from Pirinen et al. (2013) (blue)
across logistic and liability threshold model simulation scenarios. This plot should be interpreted
in conjunction with Table S1, which summarises the number of variants contributing to each bin
and average allele frequency as they are not constant across bins. For each simulation scenario
odds ratios were grouped into one unit bins that included the lower bin value but not the up-
per bin value. Each panel is split into two facets to allow for clearer comparison of the squared
deviations for smaller effect sizes. Panel (A) depicts results from the logistic model simulation.
Panel (B) shows results from the simulation scenario with K = 0.1, h2 = 0.5, ncontrols = 5000,
and ncases = 5000 (k = 0.5). Panel (C) shows results for the simulation scenario with K = 0.05,
h2 = 0.5, ncontrols = 5000, and ncases = 5000 (k = 0.5). Panel (D) presents results for the simulation
scenario with K = 0.02, h2 = 0.5, ncontrols = 8000, and ncases = 2000 (k = 0.2). Panel (E) portrays
results for the simulation scenario with K = 0.01, h2 = 0.8, ncontrols = 9000, and ncases = 1000
(k = 0.1). Panel (F) depicts results from the rare variant simulation scenario with K = 0.01,
h2 = 0.05, ncontrols = 8600, and ncases = 1400 (k = 0.14).
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A B

C D

E F

Figure S4 Performance of odds ratio transformation when using reference allele frequencies. Com-
parison of estimated odds ratios using OR2 and reference allele frequencies from the 1000 Genomes Phase
1 Version 3 European sample with true simulated odds ratios from the logistic model simulation and
liability threshold model simulation. Panel (A) depicts estimated odds ratios from the LMM on the true
simulated odds ratios for the logistic model simulation. Panel (B) depicts estimated odds ratios from the
LMM on the true simulated odds ratios for the simulation scenario with K = 0.1, h2 = 0.5, ncontrols = 5000,
and ncases = 5000 (k = 0.5). Panel (C) shows estimated odds ratios from the LMM on the true simulated
odds ratios for the simulation scenario with K = 0.5, h2 = 0.5, ncontrols = 5000, and ncases = 5000 (k = 0.5).
Panels (D) presents estimated odds ratios from the LMM on the true simulated odds ratios for the simu-
lation scenario with K = 0.02, h2 = 0.5, ncontrols = 8000, and ncases = 2000 (k = 0.2). Panel (E) portrays
estimated odds ratios from the LMM on the true simulated odds ratios for the simulation scenario with
K = 0.01, h2 = 0.8, ncontrols = 9000, and ncases = 1000 (k = 0.1). Panel (F) portrays estimated odds ratios
from the LMM on the true simulated odds ratios for the rare variant simulation scenario with K = 0.01,
h2 = 0.05, ncontrols = 8600, and ncases = 1400 (k = 0.14). All odds ratios have been reported for the allele
that increases the odds of having the disease such that each point is greater than (1, 1). Panels display
comparisons from 5,000 simulated true effects generated from the 50 replicates. All panels include the
fitted regression line (blue) and y = x line (black) for reference with the key statistics of this regression
displayed at the top of each panel.
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Figure S5 Performance of odds ratio transformation when using standard error version of approxi-
mate odds ratio transformation OR2. Comparison of estimated odds ratios using OR2 and reference allele
frequencies from the 1000 Genomes Phase 1 Version 3 European sample with true simulated odds ratios
from the logistic model simulation and liability threshold model simulation. Panel (A) depicts estimated
odds ratios from the LMM on the true simulated odds ratios for the logistic model simulation. Panel (B)
depicts estimated odds ratios from the LMM on the true simulated odds ratios for the simulation scenario
with K = 0.1, h2 = 0.5, ncontrols = 5000, and ncases = 5000 (k = 0.5). Panel (C) shows estimated odds
ratios from the LMM on the true simulated odds ratios for the simulation scenario with K = 0.05, h2 = 0.5,
ncontrols = 5000, and ncases = 5000 (k = 0.5). Panel (D) presents estimated odds ratios from the LMM on
the true simulated odds ratios for the simulation scenario with K = 0.02, h2 = 0.5, ncontrols = 8000, and
ncases = 2000 (k = 0.2). Panel (E) portrays estimated odds ratios from the LMM on the true simulated odds
ratios for the simulation scenario with K = 0.01, h2 = 0.8, ncontrols = 9000, and ncases = 1000 (k = 0.1).
Panel (F) portrays estimated odds ratios from the LMM on the true simulated odds ratios for the rare
variant simulation scenario with K = 0.01, h2 = 0.05, ncontrols = 8600, and ncases = 1400 (k = 0.14). All
odds ratios have been reported for the allele that increases the odds of having the disease such that each
point is greater than (1, 1). Panels display comparisons from 5,000 simulated true effects generated from
the 50 replicates. All panels include the fitted regression line (blue) and y = x line (black) for reference
with the key statistics of this regression displayed at the top of each panel.
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Figure S6 Summary of difference between true odds ratio and estimates from the transformed linear
model when k deviates from the true value for simulation scenarios shown in Figure 1. Panels depict
the linear regression fit to transformed odds ratio on the true odds ratios for when k was multiplied by
the factor in the legend of panel (A), which applies to all panels. Panel (A) depicts estimated odds ratios
from the LMM on the true simulated odds ratios for the logistic model simulation. Panel (B) depicts
estimated odds ratios from the LMM on the true simulated odds ratios for the simulation scenario with
K = 0.1, h2 = 0.5, ncontrols = 5000, and ncases = 5000 (k = 0.5). Panel (C) shows estimated odds ratios
from the LMM on the true simulated odds ratios for the simulation scenario with K = 0.05, h2 = 0.5,
ncontrols = 5000, and ncases = 5000 (k = 0.5). Panel (D) presents estimated odds ratios from the LMM on
the true simulated odds ratios for the simulation scenario with K = 0.02, h2 = 0.5, ncontrols = 8000, and
ncases = 2000 (k = 0.2). Panel (E) portrays estimated odds ratios from the LMM on the true simulated odds
ratios for the simulation scenario with K = 0.01, h2 = 0.8, ncontrols = 9000, and ncases = 1000 (k = 0.1).
Panel (F) portrays estimated odds ratios from the LMM on the true simulated odds ratios for the rare
variant simulation scenario with K = 0.01, h2 = 0.05, ncontrols = 8600, and ncases = 1400 (k = 0.14). All
odds ratios have been reported for the allele that increases the odds of having the disease such that each
point is greater than (1, 1).
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Figure S7 Summary of difference between true odds ratio and estimates from the transformed linear
model when p deviates from the true value for simulation scenarios shown in Figure 1. Panels depict
the linear regression fit to transformed odds ratio on the true odds ratios for when k was multiplied by
the factor in the legend of panel (A), which applies to all panels. Panel (A) depicts estimated odds ratios
from the LMM on the true simulated odds ratios for the logistic model simulation. Panel (B) depicts
estimated odds ratios from the LMM on the true simulated odds ratios for the simulation scenario with
K = 0.1, h2 = 0.5, ncontrols = 5000, and ncases = 5000 (k = 0.5). Panel (C) shows estimated odds ratios
from the LMM on the true simulated odds ratios for the simulation scenario with K = 0.05, h2 = 0.5,
ncontrols = 5000, and ncases = 5000 (k = 0.5). Panels (D) presents estimated odds ratios from the LMM on
the true simulated odds ratios for the simulation scenario with K = 0.02, h2 = 0.5, ncontrols = 8000, and
ncases = 2000 (k = 0.2). Panel (E) portrays estimated odds ratios from the LMM on the true simulated odds
ratios for the simulation scenario with K = 0.01, h2 = 0.8, ncontrols = 9000, and ncases = 1000 (k = 0.1).
Panel (F) portrays estimated odds ratios from the LMM on the true simulated odds ratios for the rare
variant simulation scenario with K = 0.01, h2 = 0.05, ncontrols = 8600, and ncases = 1400 (k = 0.14). All
odds ratios have been reported for the allele that increases the odds of having the disease such that each
point is greater than (1, 1).
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Figure S8 Single large effect variant simulation without a large covariate effect. Panels depict results
from simulation replicates for a single variant of large effect and a polygenic background such that h2 =

0.5 on the liability scale, a population prevalence K = 0.01, and k = 0.5. For each scenario, a grid of effects
ranging from 0.1 to 1.5 increasing in 0.1 increments was generated with 50 phenotypes generated per
effect size in each simulation (750 total). The points in panel (A) show the true odds ratio versus the odds
ratio estimated from the transformation (using OR2) of the estimated effect from a linear model and panel
(B) the true odds ratio versus the odds ratio estimated from logistic regression. The colours in panels (A)
and (B) represent the variants that have an adjusted R2 (expressed as a percentage) of (0, 5] (green), (5,
20] (orange) and >20 (purple) (for reference with panel (C)) and the coloured lines the linear model fit
to each class of points. The adjusted R2 was calculated from the regression of the simulated phenotype
on the variant of large effect. The black line represents the y = x line. Panel (C) depicts results from the
one degree of freedom chi-squared test for Hardy-Weinberg genotype disequilibrium (black line is the
1× 10−6 value) for each simulated variant in panel (A) for the whole SNP (blue), just cases (green) and just
controls (red). The trend lines in panel (C) were fitted using the loess method in R. Panel (D) depicts the
deviations from the true odds ratio expressed as a proportion (for the points in (A) and (B)) with negative
values implying that the odds ratio was underestimated relative to the true value. The colours in panel
(D) represent the deviations for the transformed (OR2) linear regression estimates (aqua) and the logistic
regression estimates (red).
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Figure S9 Single large effect variant simulation with a large covariate effect. Panels depict results
from simulation replicates for a single variant of large effect, a large covariate effect and a polygenic back-
ground such that h2 = 0.5 on the liability scale, a population prevalence K = 0.01, and k = 0.5. For
each scenario, a grid of effects ranging from 0.1 to 1.5 increasing in 0.1 increments was generated with 50
phenotypes generated per effect size in each simulation (750 total). The points in panel (A) show the true
odds ratio versus the odds ratio estimated the transformation (using OR2) of the estimated effect from a
linear model) and panel (B) the true odds ratio versus the odds ratio estimated from logistic regression.
The colours in panels (A) and (B) represent the variants that have an adjusted R2 (expressed as a percent-
age) of (0, 5] (green), (5, 20] (orange) and >20 (purple) (for reference with panel (C)) and the coloured lines
the linear model fit to each class of points. The adjusted R2 was calculated from the regression of the sim-
ulated phenotype on the variant of large effect. The black line represents the y = x line. Panel (C) depicts
results from the one degree of freedom chi-squared test for Hardy-Weinberg genotype disequilibrium
(black line is the 1× 10−6 value) for each simulated variant in panel (A) for the whole SNP (blue), just cases
(green) and just controls (red). The trend lines in panel (C) were fitted using the loess method in R. Panel
(D) depicts the deviations from the true odds ratio expressed as a proportion (for the points in (A) and
(B)) with negative values implying that the odds ratio was underestimated relative to the true value. The
colours in panel (D) represent the deviations for the transformed (OR2) linear regression estimates (aqua)
and the logistic regression estimates (red). Panel (E) summarises the deviations from the true odds ratio
when a meta analysis from the within covariate group estimates was performed using the transformed
odds ratio from linear regression and logistic regression. Transformations to odds ratio 21



Supplemental table

[1,2) [2,3) [3,4) [4,5) [5,6) [6,7) [7,8) [8,9) [9,10)

No. of variants

Logistic 4778 128 42 23 12 6 2 1 4

k=0.1 4925 50 9 6 4 0 2 2 0

k=0.05 4895 54 20 11 8 3 0 1 0

k=0.02 4878 67 15 10 10 5 7 0 3

k=0.01 4636 233 59 19 10 10 4 4 2

k=0.01 rare 3126 889 328 271 79 33 50 19 1

Avg. allele frequency

Logistic 0.417 0.071 0.022 0.018 0.018 0.018 0.011 0.017 0.013

K=0.1 0.439 0.029 0.021 0.024 0.018 0.000 0.010 0.019 0.000

K=0.05 0.441 0.043 0.022 0.020 0.013 0.015 0.000 0.006 0.000

K=0.02 0.442 0.075 0.026 0.022 0.017 0.017 0.018 0.000 0.030

K=0.01 0.448 0.313 0.151 0.018 0.017 0.021 0.014 0.019 0.026

K=0.01 rare 0.004 0.004 0.003 0.004 0.005 0.003 0.004 0.005 0.006

Table S1 Summary the number of causal variants and their average allele frequency
for odds ratio bins generated from the results of the simulations scenarios presented
in Figures 1 and S3. Odds ratio bins were generated from the results of the logistic
model simulation (Logistic), simulation scenario with K = 0.1, h2 = 0.5, ncontrols = 5000,
and ncases = 5000 (k = 0.5), simulation scenario with K = 0.05, h2 = 0.5, ncontrols = 5000,
and ncases = 5000 (k = 0.5), simulation scenario with K = 0.02, h2 = 0.5, ncontrols = 8000,
and ncases = 2000 (k = 0.2), simulation scenario with K = 0.01, h2 = 0.8, ncontrols = 9000,
and ncases = 1000 (k = 0.1), and the rare variant simulation scenario with K = 0.01,
h2 = 0.05, ncontrols = 8600, and ncases = 1400 (k = 0.14).
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